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Abstract—An efficient asymmetric aldol condensation of ketones with isatins has been developed using an L-proline-derived bifunctional
organocatalyst. This strategy allows the enantioselective synthesis of a variety of 3-alkyl-3-hydroxyindolin-2-ones with a stereogenic quater-
nary carbon center in excellent yields with good to excellent enantiomeric excess. The method has been applied to the enatioselective
synthesis of (S)-convolutamydine A successfully.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

3-Substituted-3-hydroxyindolin-2-ones have received much
attention from organic and medicinal chemists because
of their key structural functionalities in natural products
and drug candidates (Fig. 1),1,2 represented by convoluta-
mydines,3 diazonamide A,4a leptosin D,4b 30-hydroxygluco-
isatisin,4c witindolinone C,4d TMC-95s,5 celogentin K,6
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Figure 1. Representative examples of biologically active 3-substituted-3-
hydroxyindoline-2-ones.
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dioxibrassinine7 as well as several other pharmaceutically
active compounds.8 Chiral 3-substituted-3-hydroxyindolin-
2-ones are particularly important molecules in the field of
medicinal chemistry since their biological activities may be
derived from the substituted group at C-3 position as well
as the absolute configuration of the stereogenic center.
Accordingly, it is of great importance to develop efficient
and practical methods to synthesize such kind of compounds.
One of the most straightforward approaches to 3-substituted-
3-hydroxyindolin-2-ones is obviously a nucleophilic addi-
tion of appropriate nucleophiles to isatins. Recently, several
elegant approaches to 3-aryl or alkyl-3-hydroxyindolin-2-
ones have been reported using metal-based catalysts.9–12

Among them, a few enantioselective formations of a tertiary
alcohol at C-3 position have been carried out with moderate
to excellent enantioselectivity.13 However, to our best knowl-
edge, there has been rare organocatalytic enantioselective
synthesis of these compounds, although organocatalysis
has recently provided a new research avenue in the field of
asymmetric synthesis and may reduce the operational com-
plexity and chemical waste in comparison to metal cataly-
sis.14 Only very recently, Tomasini15a,b and Hao15c have
reported aldol reactions of isatins and acetone, among which
moderate ee (up to 77% and 79% ees, respectively) has been
obtained. Therefore, the development of more efficient
asymmetric organocatalyst is highly desirable.

On the other hand, catalytic asymmetric construction of
a stereogenic quaternary carbon center is a challenging
goal, especially the addition of carbon nucleophiles to
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ketone derivatives. The activations of both substrates are
necessary, because of their lower reactivity in the reaction.
Recently, we have developed a series of tunable and bifunc-
tional organocatalysts (Fig. 2) that can promote aldol reac-
tions with broad scope of substrates (Scheme 1).16,17 The
fundamental concept of the catalyst design is that the activity
and selectivity can be tuned by a simple modification of the
structural motif of the catalyst, and the double H-bond and
secondary amine center can activate both substrates simulta-
neously at defined positions in the transition states. As a log-
ical extension of this strategy, we have investigated the direct
aldol reaction of isatins with acetone and 2-butanone and
herein describe our preliminary results.
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Scheme 1. Direct aldol reactions of cycloketones and aldehydes.

2. Results and discussion

Initially, we conducted a reaction of isatin 9a with acetone
with the use of 3a (10 mol %) as the catalyst in the presence
of HOAc (20 mol %) without additional solvent to examine
the feasibility of the process. It was found that the reaction
afforded the aldol adduct in almost quantitative yield with
64% ee (Table 1, entry 1). Although the enantiomeric excess
of the desired product was moderate, we were nevertheless
encouraged and examined the reaction in detail under a vari-
ety of conditions in an attempt to increase the enantioselec-
tivity. Thus, the optimal catalyst 3a, employed previously for
the aldol reaction of cyclic ketones,16b was used to examine
the effects of additional solvents on the reaction, and the
results are summarized in Table 1.

The results shown in Table 1 indicate that the enantioselec-
tivity of the reaction of isatin and acetone is sensitive to the
solvent. An enantioselectivity/solvent profile documented
that the reaction in DMF occurred with higher enantioselec-
tivity than in other solvents (entries 2–7 in Table 1). Interest-
ingly, this reaction can also proceed smoothly in more
environmentally friendly solvent brine with 59% ee (entry
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Figure 2. Tunable and bifunctional organocatalysts screened.
7 in Table 1). Basically, the reaction was run with excess ace-
tone. The optimal enantiocontrol in the presence of 3a was
achieved when acetones were used as both the substrate
and the solvent (entry 1 in Table 1).

Then, we screened a small library of bifunctional organo-
catalysts 1–8 derived from L-proline and chiral diamines
(Fig. 2 and Table 2) at 10 �C. As shown in Table 2, the reac-
tion using L-proline as the catalyst provided the desired aldol
adduct 10a in high yield but with low enantioselectivity (en-
try 1 in Table 2). The bifunctional L-prolinamides 1–3, which
catalyzed highly diastereo- and enantioselective aldol

Table 1. Effects of reaction conditions on the direct aldol reaction of isatin
9a with acetonea

N
H

O
O

catalyst 3a (10 mol %)

HOAc (20 mol %)
solvent, 35 °C

9a 10a

N
H

O

O
HO

O

Entry Solvent Temp (�C) Time (h) Yieldb (%) eec (%)

1 Acetone 35 54 99 64
2 THF 35 24 99 44
3 Dioxane 35 22 94 60
4 CH2Cl2 35 22 96 58
5 Toluene 35 5 99 57
6 DMF 35 11 94 61
7 Brine 35 20 99 59

a Unless otherwise noted, reactions were carried out with 0.3 mmol of 9a
and 1 mL of acetone in 1 mL of solvent in the presence of 20 mol % of
catalyst 3a and 40 mol % of HOAc.

b Isolated yield.
c Determined by chiral HPLC.

Table 2. Direct aldol reaction of isatin 9a with acetone catalyzed by
catalysts 1–8a

N
H

O

O
O catalyst (10 mol %)

HOAc (20 mol %), temp.

9a 10a

N
H

O

O
HO

Entry Catalyst Acetone (mL) Temp (�C) Time (h) Yieldb (%) eec (%)

1 L-Pro 2 10 77 91 25
2 1a 2 10 90 93 37
3 1b 2 10 90 99 36
4 2a 2 10 62 99 31
5 2b 2 10 64 83 32
6 3a 2 10 54 99 64
7 3b 2 10 71 99 62
8 4 2 10 54 99 59
9 5 2 10 54 99 54
10 6 2 10 69 86 54
11 7 2 10 71 99 65
12 8a 2 10 69 99 45
13 8b 2 10 39 99 67
14 8b 0.6 �15 3 99 74
15 8b 0.6 �40 18 99 83
16d 8b 0.6 �40 70 89 81
17 8b 0.3 �50 41 99 88

a Unless otherwise noted, reactions were carried out with 0.3 mmol of 9a in
acetone with 10 mol % of catalyst and 20 mol % of HOAc.

b Isolated yield.
c Determined by chiral HPLC.
d Compound 8b (5 mol %) was used.
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reactions of cycloketones with aldehydes (Scheme 1),16 did
show excellent activities for the model reaction, but the
enantioselectivities were not satisfactory (entries 2–7 in
Table 2). We believe that a small variation in the structure
motif of the catalyst can greatly affect the stereoselectivity
of the reaction. Thus, we further examined the catalyst by
changing the substitution pattern of phenyl group at the
NH (entries 8–13 in Table 2) and the ee was improved to
67% when catalyst 8b was employed (entry 13 in Table 2).
It is noteworthy that the catalysts derived from L-proline
and (R,R)-diamine showed a superior level of enantiocontrol
to their diastereomers derived from L-proline and (S,S)-
diamine (entries 5, 7, 13 vs 4, 6, 12 in Table 2). These results
indicate that careful and precise tuning of the structure of the
catalyst is essential to maximize the catalytic efficiency. The
reaction temperature is another critical factor for the enan-
tioselective aldol reaction (entries 13–17 in Table 2), with

Table 3. Aldol reaction of isatins with acetone catalyzed by organocatalyst
8ba

N

O

O
O

9 10

R1

R2
catalyst 8b (10 mol %)

HOAc (20 mol %), temp.
N

O

O
HO

R2

R1

Entry R1 R2 Product Temp
(�C)

Time
(h)

Yieldb

(%)
eec

(%)

1 H H 10a �50 41 99 88
2 H H 10a �60 94 98 89
3d H H 10a �60 30 99 90
4 Me H 10b �45 50 85 88
5 Allyl H 10c �40 48 94 85
6 PhCH2 H 10d �45 50 99 87
7 H 5-Br 10e �50 144 98 80
8 H 5-F 10f �40 144 89 79
9 H 5-Me 10g �50 96 99 88
10d H 5-CF3O 10h �40 54 99 80
11 H 6-Br 10i �40 42 98 77
12d,e H 6-Cl 10j �60 96 90 78

a Unless otherwise noted, reactions were carried out with 0.3 mmol of 9 in
0.3 mL of acetone with 10 mol % of catalyst 8b and 20 mol % of HOAc.

b Isolated yield.
c Determined by chiral HPLC.
d Compound 8b (20 mol %) and 40 mol % HOAc were used.
e Acetone (0.6 mL) was used.
the best result (99% yield, 88% ee) being attained at
�50 �C (entry 17 in Table 2). Significantly, when the cata-
lyst loading was reduced to 5 mol %, the reaction still took
place in high yield with a little loss in the ee, though a longer
reaction time was needed (entry 16 vs 15 in Table 2).

With the optimized conditions in hand, the scope of the re-
action was examined with a variety of isatins (Table 3). As
shown in Table 3, isatin substrates bearing electron-with-
drawing and electron-donating substituents could be
employed in the direct organocatalytic aldol reaction. The
3-hydroxyindolin-2-one derivatives were isolated in 85–
99% yields. The reaction exhibits good to excellent enantio-
selectivities (77–90% ee). The reaction of free isatins gave
the same enantioselectivity as the reaction of N-methyl isa-
tins did (entries 1 vs 4 in Table 3). Incorporation of methyl,
allyl, and benzyl substituents at the N-1 position revealed
that electronic and steric modifications could be accom-
plished with no big influence on the reaction selectivity (en-
tries 4–6 in Table 3). As shown in entries 7–12, incorporation
of substituents at the C-5 and C-6 positions showed obvious
influence on the enantioselectivity of the reaction. In gen-
eral, the substituent at C-5 proved to be superior to C-6
substituted analogues (entries 7 vs 11 in Table 3). In the
case of 5-methylisatin, the product was obtained in almost
quantitative yield with 88% ee (entry 9 in Table 3). Signifi-
cantly, F-, Cl-, and Br-substituted isatins worked as well for
this reaction (entries 7, 8, and 10–12 in Table 3). Such
chloro- and bromo-oxindoles could be valuable for some
transition-metal-catalyzed transformation,18 and the fluo-
rine-containing products could be useful in the fields of
medicinal and material sciences.19

We next examined the ability of diamide catalyst 8b to cat-
alyze direct aldol reactions of isatins with 2-butanone. As
shown in Table 4, this process was also very efficient, pro-
viding the aldol adducts in excellent chemical yields with
reasonable enantioselectivities. The reaction exhibits high
regioselectivity, and affords the products of C–C bond for-
mation at the methyl group, the less substituted C1-position
of butanone as the major regioisomers (entries 1–4 in
Table 4). Because the aldol adducts 11 are generally solids,
it is possible to obtain excellent enantiomeric excesses after
a single recrystallization (entry 3 in Table 4, 95% ee).
Table 4. Aldol reaction of isatins with 2-butanone catalyzed by organocatalyst 8ba

N

O

O
O

N
O

O
HO

9 11

R1R1

R2
R2+

Catalyst 8b 10 mol %
HOAc 20 mol %

-20 ° C N
O

O
HO

R1

R2

12

+

Entry R1 R2 9 Time (h) Yield (11/12)b,c (%) eed (11) (%)

1 H H a 46 98 (9/1) 74
2 H 5-Me g 18 99 (7/1) 72
3 H 5-CF3O h 46 99 (12/1) 75 (95)e

4 H 6-Cl j 46 99 (8/1) 70

a Unless otherwise noted, reactions were carried out with 0.3 mmol of 9 in 0.3 mL of 2-butanone with 10 mol % of catalyst 8b and 20 mol % of HOAc.
b Isolated yield of mixture of 11 and 12.
c Determined by 1 H NMR.
d Determined by chiral HPLC.
e After one recrystallization.
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Scheme 2. Synthesis of (S)-convolutamydine A.
An application of this organocatalytic aldol reaction of isatin
with ketones is represented in a simple synthesis of (S)-con-
volutamydine A. Convolutamydines A–E (Fig. 1), isolated
from the Floridian marine bryozoan Amathia convolute by
Kanano et al. in 1995, are members of a class of oxindole
alkaloids containing 4,6-dibromo-3-hydroxy-oxindole as
a common structural motif.3a A few racemic syntheses of
these alkaloids have already been reported by several
groups,3b,20 and recently Kobayashi and co-workers re-
ported enantioselective synthesis of convolutamydines B
and E via Mukaiyama aldol reaction.9b Tomasini and
co-workers presented the first organocatalytic asymmetric
synthesis of (R)-convolutamydine A with 68% ee.15b We
applied the catalyst 8b in the synthesis of (S)-convolutamy-
dine A and 60% ee was obtained (87% ee after a single
recrystallization) (Scheme 2).

The absolute configuration of the aldol product 10a was de-
termined to be S by comparing our experimental results with
those in the literature.15 The absolute configuration of 10j
was unambiguously determined to be S by single-crystal
X-ray analysis (Fig. 3).21 Accordingly, we hypothesized
that enantiofacial discrimination might be governed by the
control of catalyst in enamine geometry and orientation of
the isatins. A possible transition state is proposed in Figure 4,
which is in accordance with previously proposed L-proline-
based aldol transition-state model.22 The configuration of
other products could be tentatively assigned by assuming
an analogous enantioinduction.
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3. Conclusions

In summary, we have described a direct catalytic asymmetric
aldol reaction of acetone and butanone with isatins using
L-proline-derived bifunctional organocatalysts. This method
represents a general approach to 3-alkyl-3-hydroxyindolin-
2-ones with a quaternary stereocenter. Yields of products
are excellent (85–99%). The reaction exhibits good to excel-
lent enantioselectivities (up to 90% ee).

4. Experimental

4.1. General

Unless otherwise noted, material were purchased from
commercial suppliers and used without further purification.
Dichloromethane, dimethyl sulfoxide (DMSO), and N,N-
dimethyl formamide (DMF) were freshly distilled from cal-
cium hydride. Tetrahydrofuran (THF), dioxane, and toluene
were distilled from sodium/benzophenone. Flash column
chromatography was performed using 200–300 mesh silica
gel. 1H NMR spectra were recorded on 400 MHz spectro-
photometers. Solvent for NMR is DMSO-d, unless the other-
wise noted. Chemical shifts are reported in delta (d) units in
parts per million (ppm) relative to the singlet (0 ppm) for
tetramethylsilane (TMS). Data are reported as follows:
chemical shift, multiplicity (s¼single, d¼doublet, t¼triplet,
q¼quartet, br¼broad, and m¼multiplet), coupling constants
(Hz) and integration. 13C NMR spectra were recorded on
100 MHz. Chemical shifts are reported in parts per million
relative to the central line of the heptet at 39.5 ppm for
DMSO-d. Chiral HPLC was performed with chiral columns
(Chiralpak AD and OJ columns).

4.1.1. General procedure for the aldol reaction of isatin 9
with acetone. The organocatalyst 8b (0.03 mmol) and
HOAc (0.06 mmol) were stirred in 0.3 mL acetone for
10 min at �50 �C. The corresponding isatin 9a (0.3 mmol)
was added and the mixture was stirred for 41 h. Then acetone
was removed under reduced pressure and the mixture was
purified by flash column chromatography on silica gel (pe-
troleum ether/ethyl acetate (2/1)). Organocatalysts 1–8
were prepared according to the previously reported proce-
dure.16a–c Catalysts 1–3 are known compounds.16a–c

4.1.1.1. Catalyst 4. 1H NMR d 1.44–1.58 (m, 2H), 1.61–
1.69 (m, 1H), 1.90 (br s, 1H), 1.96–2.05 (m, 1H), 2.82–2.96
(m, 2H), 3.71 (q, J¼4.8, 9.2 Hz, 1H), 5.24 (dd, J¼8.0,
10.8 Hz, 1H), 5.34 (dd, J¼7.2, 11.2 Hz, 1H), 7.09–7.23
(m, 10H), 7.38 (d, J¼8.8 Hz, 2H), 7.82 (d, J¼8.4 Hz, 2H),
8.39 (d, J¼6.8 Hz, 1H), 8.53 (d, J¼8.0 Hz, 1H); 13C NMR
d 25.7, 30.6, 46.9, 58.2, 60.1, 61.1, 127.2, 127.3, 127.8,
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128.0, 128.3, 128.5, 128.6, 131.9, 137.4, 137.9, 139.2, 165.4,
176.9; MS (EI) m/z 448 (rel intensity) (M++1). Analysis cal-
culated for C26H26ClN3O2: C, 69.71; H, 5.85; N, 9.38.
Found: C, 69.67; H, 5.88; N, 9.35.

4.1.1.2. Catalyst 5. 1H NMR d 1.60–1.62 (m, 3H), 1.83–
1.94 (m, 1H), 2.24 (br s, 1H), 2.87–2.99 (m, 2H), 3.5 (q,
J¼4.8, 9.2 Hz, 1H), 5.31 (dd, J¼8.8, 10.4 Hz, 1H), 5.42
(dd, J¼7.6, 10.4 Hz, 1H), 7.14–7.23 (m, 11H), 7.38 (d,
J¼2.0 Hz, 1H), 7.43 (d, J¼8.0 Hz, 1H), 8.26 (d, J¼7.6 Hz,
1H), 8.55 (d, J¼8.0 Hz, 1H); 13C NMR d 26.0, 30.6, 47.1,
58.0, 60.2, 60.4, 127.0, 127.4, 127.5, 127.7, 127.8, 128.2,
128.4, 128.5, 129.9, 130.4, 131.9, 133.4, 136.3, 138.2,
138.9, 165.3, 176.1; MS (EI) m/z 482 (rel intensity) (M+).
Analysis calculated for C26H25Cl2N3O2: C, 64.73; H, 5.22;
N, 8.71. Found: C, 64.79; H, 5.25; N, 8.67.

4.1.1.3. Catalyst 6. 1H NMR d 1.52–1.64 (m, 2H), 1.76–
1.82 (m, 1H), 2.07–2.14 (m, 1H), 2.62 (br s, 1H), 2.72–2.77
(m, 1H), 2.89–2.95 (m, 1H), 3.73 (q, J¼5.6, 9.2 Hz, 1H), 3.8
(s, 1H), 5.28 (dd, J¼8.0, 10.0 Hz, 1H), 5.41 (dd, J¼8.0,
10.4 Hz, 1H), 6.91 (d, J¼8.8 Hz, 2H), 7.12–7.23 (m, 10H),
7.81 (d, J¼8.8 Hz, 2H), 8.10 (d, J¼7.6 Hz, 1H), 8.56 (d,
J¼8.0 Hz, 1H); 13C NMR d 25.8, 30.4, 46.9, 55.2, 58.5,
60.1, 60.7, 113.5, 126.1, 127.2, 127.3, 127.7, 128.1, 128.5,
128.9, 138.0, 139.4, 161.9, 166.4, 176.1; MS (EI) m/z 444
(rel intensity) (M++1). Analysis calculated for
C27H29N3O3: C, 73.11; H, 6.59; N, 9.47. Found: C, 73.05;
H, 6.69; N, 9.41.

4.1.1.4. Catalyst 7. 1H NMR d 1.42–1.54 (m, 2H), 1.63–
1.71 (m, 1H), 1.92 (br s, 1H), 1.94–2.02 (m, 1H), 2.82–2.88
(m, 1H), 2.89–2.95 (m, 1H), 3.71 (q, J¼5.2, 9.2 Hz, 1H),
5.28 (dd, J¼8.4, 11.2 Hz, 1H), 5.40 (dd, J¼7.2, 11.2 Hz,
1H), 7.10–7.24 (m, 10H), 7.41–7.50 (m, 3H), 7.87–7.89
(m, 2H), 8.23 (d, J¼7.2 Hz, 1H), 8.54 (d, J¼8.0 Hz, 1H);
13C NMR d 25.8, 30.6, 47.0, 58.1, 60.2, 61.2, 127.1, 127.2,
127.4, 127.5, 127.9, 128.1, 128.3, 128.6, 131.3, 133.5,
137.9, 139.4, 166.4, 176.9; MS (EI) m/z 414 (rel intensity)
(M++1). Analysis calculated for C26H27N3O2: C, 75.52; H,
6.58; N, 10.16. Found: C, 75.49; H, 6.60; N, 10.21.

4.1.1.5. Catalyst 8a. 1H NMR d 1.48–1.60 (m, 2H), 1.73–
1.81 (m, 1H), 2.00–2.09 (m, 1H), 2.31 (s, 6H), 2.45 (br s,
1H), 2.71–2.77 (m, 1H), 2.86–2.92 (m, 1H), 3.65 (q,
J¼5.6, 9.2 Hz, 1H), 5.30 (dd, J¼8.8, 10.0 Hz, 1H), 5.44
(dd, J¼8.0, 10.4 Hz, 1H), 7.08–7.19 (m, 11H), 7.41 (s,
2H), 7.97 (d, J¼8.0 Hz, 1H), 8.53 (d, J¼8.8 Hz, 1H); 13C
NMR d 21.1, 25.8, 30.4, 46.9, 58.3, 60.2, 60.5, 124.7,
127.3, 127.6, 128.1, 128.4, 132.9, 133.9, 137.9, 138.0,
138.2, 139.3, 167.3, 176.1; MS (EI) m/z 441 (rel intensity)
(M+). Analysis calculated for C28H31N3O2: C, 76.16; H,
7.08; N, 9.52. Found: C, 76.21; H, 7.14; N, 9.45.

4.1.1.6. Catalyst 8b. 1H NMR d 1.46–1.52 (m, 2H), 1.69–
1.77 (m, 1H), 1.93–2.01 (m, 1H), 2.06 (br s, 1H), 2.34 (s,
6H), 2.81–2.86 (m, 1H), 2.88–2.94 (m, 1H), 3.70 (q,
J¼4.8, 9.2 Hz, 1H), 5.28 (dd, J¼8.4, 10.4 Hz, 1H), 5.40
(dd, J¼7.6, 10.8 Hz, 1H), 7.10–7.22 (m, 11H), 7.44 (s,
2H), 7.94 (d, J¼7.6 Hz, 1H), 8.53 (d, J¼8.4 Hz, 1H); 13C
NMR d 21.0, 25.7, 30.3, 46.8, 58.0, 60.1, 60.5, 124.7,
127.0, 127.3, 127.4, 127.6, 127.9, 128.4, 132.7, 133.5,
137.7, 138.1, 139.3, 166.9, 176.3; MS (EI) m/z 441 (rel
intensity) (M+). Analysis calculated for C28H31N3O2: C,
76.16; H, 7.08; N, 9.52. Found: C, 76.10; H, 7.16; N, 9.47.

4.1.1.7. Compound 10a: 3-(2-oxopropyl)-3-hydroxyin-
dolin-2-one. The ee was determined by HPLC (Chiralpak
AD column, hexane/i-PrOH 70:30, flow rate 1 mL/min; tR
(major)¼7.1 min; tR (minor)¼9.5 min, l¼254 nm). 1H
NMR d 2.00 (s, 3H), 3.01 (d, J¼16.4 Hz, 1H), 3.28 (d,
J¼16.8 Hz, 1H), 6.00 (br s, 1H), 6.79 (d, J¼7.6 Hz, 1H),
6.91 (t, J¼7.6 Hz, 1H), 7.17 (t, J¼8.0 Hz, 1H), 7.25 (d,
J¼7.6 Hz, 1H), 10.22 (br s, 1H); 13C NMR d 30.7, 50.4,
72.8, 109.6, 121.4, 123.8, 129.1, 131.6, 142.6, 178.3,
205.3; MS (EI) m/z 206 (rel intensity) (M++1). Analysis cal-
culated for C11H11NO3: C, 64.38; H, 5.40; N, 6.83. Found:
C, 64.15; H, 5.59; N, 6.77.

4.1.1.8. Compound 10b: 1-methyl-3-(2-oxopropyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak OJ column, hexane/i-PrOH 70:30, flow rate
1 mL/min; tR (minor)¼8.7 min; tR (major)¼10.3 min,
l¼254 nm). 1H NMR d 1.98 (s, 3H), 3.07 (d, J¼16.4 Hz,
1H), 3.09 (s, 3H), 3.34 (d, J¼16.8 Hz, 1H), 6.05 (br s,
1H), 6.95 (d, J¼8.0 Hz, 1H), 6.99 (t, J¼7.6 Hz, 1H), 7.26–
7.30 (m, 2H), 10.22 (br s, 1H); 13C NMR d 25.8, 30.5,
50.4, 72.3, 108.2, 121.9, 123.2, 129.1, 130.9, 144.0, 176.5,
205.1; MS (EI) m/z 219 (rel intensity) (M+). Analysis calcu-
lated for C12H13NO3: C, 65.74; H, 5.98; N, 6.39. Found: C,
65.63; H, 6.14; N, 6.42.

4.1.1.9. Compound 10c: 1-allyl-3-(2-oxopropyl)-3-hy-
droxyindolin-2-one. The ee was determined by HPLC
(Chiralpak AD column, hexane/i-PrOH 90:10, flow rate
1 mL/min; tR (minor)¼17.4 min; tR (major)¼19.0 min,
l¼254 nm). 1H NMR d 1.99 (s, 3H), 3.12 (d, J¼16.8 Hz,
1H), 3.39 (d, J¼17.2 Hz, 1H), 4.21 (dd, J¼4.8, 16.4 Hz,
1H), 4.31 (dd, J¼4.4, 16.8 Hz, 1H), 5.16 (d, J¼10.4 Hz, 1H),
5.35 (d, J¼17.2 Hz, 1H), 5.79–5.88 (m, 1H), 6.09 (br s, 1H),
6.86 (d, J¼7.6 Hz, 1H), 6.98 (t, J¼7.6 Hz, 1H), 7.24 (t,
J¼8.0 Hz, 1H), 7.31 (d, J¼7.2 Hz, 1H); 13C NMR d 30.4,
41.4, 50.3, 72.2, 108.9, 116.7, 121.9, 123.3, 129.0, 130.9,
131.9, 143.2, 176.3, 205.1; MS (EI) m/z 245 (rel intensity)
(M+). Analysis calculated for C14H15NO3: C, 68.56; H,
6.16; N, 5.71. Found: C, 68.34; H, 6.28; N, 5.78.

4.1.1.10. Compound 10d: 1-benzyl-3-(2-oxopropyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak AD column, hexane/i-PrOH 90:10, flow rate
1 mL/min; tR (minor)¼29.8 min; tR (major)¼31.9 min,
l¼254 nm). 1H NMR d 2.02 (s, 3H), 3.18 (d, J¼16.8 Hz,
1H), 3.44 (d, J¼16.8 Hz, 1H), 4.82 (d, J¼16.0 Hz, 1H),
4.91 (d, J¼16.0 Hz, 1H), 6.19 (br s, 1H), 6.73 (d,
J¼7.6 Hz, 1H), 6.96 (t, J¼7.6 Hz, 1H), 7.16 (d, J¼7.6 Hz,
1H), 7.25 (t, J¼7.2 Hz, 1H), 7.33 (t, J¼7.2 Hz, 3H), 7.43
(d, J¼7.2 Hz, 1H); 13C NMR d 30.4, 42.7, 50.3, 72.3,
108.9, 122.0, 123.4, 127.2, 128.4, 129.0, 130.9, 136.3,
143.1, 176.7, 205.2; MS (EI) m/z 296 (rel intensity)
(M++1). Analysis calculated for C16H21NO2: C, 74.10; H,
8.16; N, 5.40. Found: C, 74.59; H, 8.45; N, 4.92.

4.1.1.11. Compound 10e: 5-bromo-3-(2-oxopropyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak AD column, hexane/i-PrOH 70:30, flow rate
1 mL/min; tR (major)¼6.6 min; tR (minor)¼9.3 min,
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l¼254 nm). 1H NMR d 2.02 (s, 3H), 3.07 (d, J¼17.2 Hz,
1H), 3.39 (d, J¼17.2 Hz, 1H), 6.09 (br s, 1H), 6.75 (d,
J¼8.0 Hz, 1H), 7.35 (d, J¼8.0 Hz, 1H), 7.43 (s, 1H),
10.36 (br s, 1H); 13C NMR d 30.3, 50.0, 72.6, 111.4,
113.0, 126.7, 131.6, 134.2, 142.0, 177.8, 205.3; MS (EI)
m/z 285 (rel intensity) (M++1). Analysis calculated for
C11H10BrNO3: C, 46.50; H, 3.55; N, 4.93. Found: C,
45.95; H, 3.63; N, 4.95.

4.1.1.12. Compound 10f: 5-fluoro-3-(2-oxopropyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak pre-AD column, hexane/i-PrOH 70:30, flow
rate 1 mL/min; tR (major)¼6.5 min; tR (minor)¼8.7 min,
l¼254 nm). 1H NMR d 2.02 (s, 3H), 3.06 (d, J¼16.8 Hz,
1H), 3.35 (d, J¼17.2 Hz, 1H), 6.10 (br s, 1H), 6.77 (dd,
J¼4.4, 8.4 Hz, 1H), 6.97–7.03 (m, 1H), 7.16 (dd, J¼2.4,
8.4 Hz, 1H), 10.36 (br s, 1H); 13C NMR d 30.4, 50.0, 72.9,
110.0, 110.1, 111.5, 111.8, 114.9, 115.1, 133.3, 133.4,
138.8, 156.7, 159.0, 178.2, 205.2; MS (EI) m/z 223 (rel in-
tensity) (M+). Analysis calculated for C11H10FNO3: C,
59.19; H, 4.52; N, 6.28. Found: C, 59.17; H, 4.53; N, 6.11.

4.1.1.13. Compound 10g: 5-methyl-3-(2-oxopropyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak AD column, hexane/i-PrOH 70:30, flow rate
1 mL/min; tR (major)¼6.9 min; tR (minor)¼8.8 min,
l¼254 nm). 1H NMR d 2.00 (s, 3H), 2.22 (s, 3H), 2.99 (d,
J¼16.8 Hz, 1H), 3.24 (d, J¼16.8 Hz, 1H), 5.92 (br s, 1H),
6.66 (d, J¼7.2 Hz, 1H), 6.97 (d, J¼7.6 Hz, 1H), 7.06 (s,
2H), 10.11 (br s, 1H); 13C NMR d 20.7, 30.6, 50.3, 72.7,
109.1, 124.3, 129.1, 129.9, 131.6, 140.0, 178.1, 205.1; MS
(EI) m/z 219 (rel intensity) (M+). Analysis calculated for
C12H13NO3: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.48;
H, 6.24; N, 6.28.

4.1.1.14. Compound 10h: 5-trifluoromethoxy-3-(2-ox-
opropyl)-3-hydroxyindolin-2-one. The ee was determined
by HPLC (Chiralpak AD column, hexane/i-PrOH 70:30,
flow rate 1 mL/min; tR (major)¼4.8 min; tR (minor)-
¼6.0 min, l¼254 nm). 1H NMR d 2.00 (s, 3H), 3.07 (d,
J¼17.2 Hz, 1H), 3.41 (d, J¼17.2 Hz, 1H), 6.17 (br s, 1H),
6.86 (d, J¼8.4 Hz, 1H), 7.18 (d, J¼8.4 Hz, 1H), 7.30 (s,
2H), 10.42 (br s, 1H); 13C NMR d 30.4, 49.9, 72.8, 110.2,
117.7, 118.9, 121.5, 122.2, 133.4, 141.9, 142.9, 178.2,
205.3; MS (EI) m/z 290 (rel intensity) (M++1). Analysis cal-
culated for C12H10F3NO4: C, 49.84; H, 3.49; N, 4.84. Found:
C, 49.99; H, 3.52; N, 4.82.

4.1.1.15. Compound 10i: 6-bromo-3-(2-oxopropyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak AD column, hexane/i-PrOH 70:30, flow rate
1 mL/min; tR (major)¼7.1 min; tR (minor)¼9.2 min,
l¼254 nm). 1H NMR d 2.00 (s, 3H), 3.07 (d, J¼17.2 Hz,
1H), 3.34 (d, J¼17.2 Hz, 1H), 6.07 (br s, 1H), 6.93 (s,
1H), 7.10 (d, J¼8.0 Hz, 1H), 7.20 (d, J¼8.0 Hz, 1H),
10.37 (br s, 1H); 13C NMR d 30.4, 50.0, 72.2, 112.2,
121.6, 123.8, 125.5, 131.0, 144.4, 178.0, 205.3; MS (EI)
m/z 285 (rel intensity) (M++1). Analysis calculated for
C11H10BrNO3: C, 46.50; H, 3.55; N, 4.93. Found: C,
46.60; H, 3.48; N, 5.02.

4.1.1.16. Compound 10j: 6-chloro-3-(2-oxopropyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak AD column, hexane/i-PrOH 70:30, flow rate
1 mL/min; tR (major)¼7.0 min; tR (minor)¼9.4 min,
l¼254 nm). 1H NMR d 2.00 (s, 3H), 3.08 (d, J¼16.8 Hz,
1H), 3.35 (d, J¼17.2 Hz, 1H), 6.08 (br s, 1H), 6.81 (d,
J¼1.6 Hz, 1H), 6.96 (dd, J¼1.6, 8.0 Hz, 1H), 7.26 (d,
J¼7.6 Hz, 1H), 10.39 (br s, 1H); 13C NMR d 30.4, 50.1,
72.2, 109.5, 120.9, 125.2, 130.6, 133.2, 144.3, 178.2,
205.3; MS (EI) m/z 241 (rel intensity) (M++1). Analysis cal-
culated for C11H10ClNO3: C, 55.13; H, 4.21; N, 5.84. Found:
C, 55.47; H, 4.24; N, 5.84.

4.1.1.17. Compound 11a: 3-(2-oxobutyl)-3-hydroxy-
indolin-2-one. The ee was determined by HPLC (Chiralpak
AD column, hexane/i-PrOH 70:30, flow rate 1 mL/min; tR
(major)¼7.4 min; tR (minor)¼8.3 min, l¼254 nm). 1H
NMR d 0.74 (t, J¼7.2 Hz, 3H), 2.34 (dd, J¼17.6, 7.2 Hz,
2H), 2.98 (dd, J¼16.4 Hz, 1H), 3.26 (d, J¼16.4 Hz, 1H),
5.97 (br s, 1H), 6.76 (d, J¼7.6 Hz, 1H), 6.87 (t, J¼7.6,
8.0 Hz, 1H), 7.14 (t, J¼8.0 Hz, 1H), 7.21 (d, J¼7.2 Hz,
1H), 10.20 (br s, 1H); 13C NMR d 7.3, 35.7, 49.2, 72.7,
109.4, 121.2, 123.7, 129.0, 131.5, 142.6, 178.3, 207.5; MS
(EI) m/z 219 (rel intensity) (M+). Analysis calculated for
C12H13NO3: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.69;
H, 5.94; N, 6.45.

4.1.1.18. Compound 11g: 5-methyl-3-(2-oxobutyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak AD column, hexane/i-PrOH 90:10, flow rate
1 mL/min; tR (major)¼26.3 min; tR (minor)¼29.0 min,
l¼254 nm). 1H NMR d 0.81 (t, J¼7.2 Hz, 3H), 2.26 (s,
3H), 2.40 (dd, J¼16.4, 7.6 Hz, 2H), 3.03 (d, J¼16.4 Hz,
1H), 3.28 (d, J¼16.4 Hz, 1H), 5.97 (br s, 1H), 6.71 (d,
J¼7.6 Hz, 1H), 7.01 (t, J¼8.0 Hz, 1H), 7.10 (s, 1H), 10.15
(br s, 1H); 13C NMR d 7.3, 20.7, 35.6, 49.2, 72.8, 109.2,
124.4, 129.1, 130.0, 131.6, 140.1, 178.3, 207.4; MS (EI)
m/z 234 (rel intensity) (M++1). Analysis calculated for
C13H15NO3: C, 66.94; H, 6.48; N, 6.00. Found: C, 66.80;
H, 6.55; N, 6.35.

4.1.1.19. Compound 11h: 5-trifluoromethoxy-3-(2-
oxobutyl)-3-hydroxyindolin-2-one. The ee was determined
by HPLC (Chiralpak AS column, hexane/i-PrOH 85:15,
flow rate 1 mL/min; tR (minor)¼41.2 min; tR (ma-
jor)¼47.3 min, l¼254 nm). 1H NMR d 0.78 (t, J¼7.2 Hz,
3H), 2.37 (dd, J¼10.4, 7.2 Hz, 2H), 3.06 (d, J¼17.2 Hz,
1H), 3.41 (d, J¼16.8 Hz, 1H), 6.19 (br s, 1H), 6.88 (d,
J¼8.4 Hz, 1H), 7.18 (q, J¼1.6, 8.4 Hz, 1H), 7.32 (s, 1H),
10.44 (br s, 1H); 13C NMR d 7.2, 35.6, 48.8, 77.9, 110.2,
117.7, 119.0, 121.6, 122.2, 133.4, 141.9, 143.0, 178.3,
207.7; MS (EI) m/z 303 (rel intensity) (M+). Analysis calcu-
lated for C13H12F3NO4: C, 51.49; H, 3.99; N, 4.62. Found:
C, 51.55; H, 3.90; N, 4.65.

4.1.1.20. Compound 11j: 6-chloro-3-(2-oxobutyl)-3-
hydroxyindolin-2-one. The ee was determined by HPLC
(Chiralpak AD column, hexane/i-PrOH 90:10, flow rate
1 mL/min; tR (major)¼26.9 min; tR (minor)¼31.4 min,
l¼254 nm). 1H NMR d 0.78 (t, J¼7.2 Hz, 3H), 2.37 (dd,
J¼16.8, 7.2 Hz, 2H), 3.09 (d, J¼16.8 Hz, 1H), 3.36
(d, J¼16.8 Hz, 1H), 6.12 (br s, 1H), 6.84 (s, 1H), 6.95
(d, J¼8.0 Hz, 1H), 7.27 (d, J¼7.6 Hz, 1H), 10.40 (br s,
1H); 13C NMR d 7.4, 35.6, 49.1, 72.4, 109.7, 121.0,
125.2, 130.0, 133.4, 144.3, 178.4, 207.7; MS (EI) m/z 253
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(rel intensity) (M+). Analysis calculated for C12H12ClNO3:
C, 51.49; H, 3.99; N, 4.62. Found: C, 51.55; H, 3.90; N,
4.70.

4.1.1.21. Compound A: 5,7-dibromo-3-(2-oxopropyl)-
3-hydroxyindolin-2-one. The ee was determined by
HPLC (Chiralpak AD column, hexane/i-PrOH 70:30, flow
rate 1 mL/min; tR (major)¼7.9 min; tR (minor)¼10.1 min,
l¼254 nm). 1H NMR d 2.02 (s, 3H), 3.15 (d, J¼17.6 Hz,
1H), 3.73 (d, J¼18.0 Hz, 1H), 6.21 (br s, 1H), 6.94 (s,
1H), 7.28 (s, 1H), 10.62 (s, 1H); 13C d NMR 30.0, 48.3,
111.8, 119.0, 122.4, 126.7, 128.7, 146.4, 177.3, 205.3; MS
(EI) m/z 364 (rel intensity) (M++1). Analysis calculated
for C11H9Br2NO3: C, 36.40; H, 2.50; N, 3.86. Found: C,
36.26; H, 2.47; N, 3.88.
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